Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans.
نویسنده
چکیده
The concentration of particles in the ambient air is associated with deaths from cardiovascular disease, and determining the biologic mechanisms involved has been identified as a high-priority research need. Hypotheses have focused on the possibility of direct cardiac effects, or indirect effects related to inflammatory responses, including increased blood viscosity or increased blood coagulability. Ultrafine particles (UFPs; those smaller than 100 nm) may be important in cardiovascular effects because of their very high deposition efficiency in the pulmonary region, and their high propensity to penetrate the epithelium and reach interstitial sites. We have initiated human clinical studies of the health effects of UFPs using a mouthpiece exposure system. Healthy, nonsmoking subjects 18-55 years of age are exposed at rest for 2 hr to 10 microg/m3 carbon UFPs and to filtered air as a control. Preliminary findings indicate a relatively high overall deposition fraction (0.66 +/- 0.12 by particle number) consistent with model predictions and an absence of particle-associated symptoms or changes in lung function. Planned studies examine responses in susceptible subject groups, and the effects of particles of varying composition. Human clinical studies using model particles will complement other approaches such as epidemiologic, animal exposure, and in vitro studies in determining the mechanisms for heath effects related to ambient particle exposure.
منابع مشابه
Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung.
BACKGROUND Epidemiologic studies show that exposure to particulate air pollution is associated with asthma exacerbation. Ultrafine particles (diameter <100 nm) may contribute to these adverse effects. OBJECTIVE To investigate potential adjuvant activity of inhaled elemental carbon ultrafine particles (EC-UFPs) on allergic airway inflammation. METHODS The effects of ultrafine particle inhala...
متن کاملShort-term chamber exposure to low doses of two kinds of wood smoke does not induce systemic inflammation, coagulation or oxidative stress in healthy humans
INTRODUCTION Air pollution increases the risk of cardiovascular diseases. A proposed mechanism is that local airway inflammation leads to systemic inflammation, affecting coagulation and the long-term risk of atherosclerosis. One major source of air pollution is wood burning. Here we investigate whether exposure to two kinds of wood smoke, previously shown to cause airway effects, affects bioma...
متن کاملIncreased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types.
BACKGROUND Ultrafine particles have been hypothesised to be an important contributing factor in the toxicity and adverse health effects of particulate air pollution (PM10) and nanoparticles are used increasingly in industrial processes. AIMS To compare the ability of ultrafine and fine particles of titanium dioxide and carbon black to induce inflammation, cause epithelial injury, and affect t...
متن کاملDoes gallic acid improve cardiac function by attenuation of oxidative stress and inflammation in an elastase-induced lung injury?
Objective(s): Cardiovascular disease has an important role in mortality caused by lung injury. Emphysema is associated with impaired pulmonary gas exchange efficiency and airflow limitation associated with small airway inflammation. The aim was to evaluate the interactions between lung injury, inflammation, and cardiovascular disease. Since gallic acid has antioxidant ...
متن کاملVascular Effects of Ultrafine Particles in Persons with Type 2 Diabetes
BACKGROUND Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. METHODS In a randomized, double-blind, crossover trial, 19 subjects with type 2 diabetes inhaled filtered air or 50 µg/m³...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 109 شماره
صفحات -
تاریخ انتشار 2001